Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37670501

RESUMO

Dysregulation of microRNAs (miRNAs) is closely associated with refractory human diseases, and the identification of potential associations between small molecule (SM) drugs and miRNAs can provide valuable insights for clinical treatment. Existing computational techniques for inferring potential associations suffer from limitations in terms of accuracy and efficiency. To address these challenges, we devise a novel predictive model called RPCA$\Gamma $NR, in which we propose a new Robust principal component analysis (PCA) framework based on $\gamma $-norm and $l_{2,1}$-norm regularization and design an Augmented Lagrange Multiplier method to optimize it, thereby deriving the association scores. The Gaussian Interaction Profile Kernel Similarity is calculated to capture the similarity information of SMs and miRNAs in known associations. Through extensive evaluation, including Cross Validation Experiments, Independent Validation Experiment, Efficiency Analysis, Ablation Experiment, Matrix Sparsity Analysis, and Case Studies, RPCA$\Gamma $NR outperforms state-of-the-art models concerning accuracy, efficiency and robustness. In conclusion, RPCA$\Gamma $NR can significantly streamline the process of determining SM-miRNA associations, thus contributing to advancements in drug development and disease treatment.


Assuntos
Algoritmos , MicroRNAs , Humanos , Análise de Componente Principal , Desenvolvimento de Medicamentos , MicroRNAs/genética , Projetos de Pesquisa
2.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37482409

RESUMO

Numerous biological studies have shown that considering disease-associated micro RNAs (miRNAs) as potential biomarkers or therapeutic targets offers new avenues for the diagnosis of complex diseases. Computational methods have gradually been introduced to reveal disease-related miRNAs. Considering that previous models have not fused sufficiently diverse similarities, that their inappropriate fusion methods may lead to poor quality of the comprehensive similarity network and that their results are often limited by insufficiently known associations, we propose a computational model called Generative Adversarial Matrix Completion Network based on Multi-source Data Fusion (GAMCNMDF) for miRNA-disease association prediction. We create a diverse network connecting miRNAs and diseases, which is then represented using a matrix. The main task of GAMCNMDF is to complete the matrix and obtain the predicted results. The main innovations of GAMCNMDF are reflected in two aspects: GAMCNMDF integrates diverse data sources and employs a nonlinear fusion approach to update the similarity networks of miRNAs and diseases. Also, some additional information is provided to GAMCNMDF in the form of a 'hint' so that GAMCNMDF can work successfully even when complete data are not available. Compared with other methods, the outcomes of 10-fold cross-validation on two distinct databases validate the superior performance of GAMCNMDF with statistically significant results. It is worth mentioning that we apply GAMCNMDF in the identification of underlying small molecule-related miRNAs, yielding outstanding performance results in this specific domain. In addition, two case studies about two important neoplasms show that GAMCNMDF is a promising prediction method.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Algoritmos , Biologia Computacional/métodos , Neoplasias/genética , Bases de Dados Genéticas , Predisposição Genética para Doença
3.
Comput Biol Med ; 163: 107152, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364529

RESUMO

Single-cell RNA sequencing (scRNA-seq) is now a successful technique for identifying cellular heterogeneity, revealing novel cell subpopulations, and forecasting developmental trajectories. A crucial component of the processing of scRNA-seq data is the precise identification of cell subpopulations. Although many unsupervised clustering methods have been developed to cluster cell subpopulations, the performance of these methods is vulnerable to dropouts and high dimensionality. In addition, most existing methods are time-consuming and fail to adequately account for potential associations between cells. In the manuscript, we present an unsupervised clustering method based on an adaptive simplified graph convolution model called scASGC. The proposed method builds plausible cell graphs, aggregates neighbor information using a simplified graph convolution model, and adaptively determines the most optimal number of convolution layers for various graphs. Experiments on 12 public datasets show that scASGC outperforms both classical and state-of-the-art clustering methods. In addition, in a study of mouse intestinal muscle containing 15,983 cells, we identified distinct marker genes based on the clustering results of scASGC. The source code of scASGC is available at https://github.com/ZzzOctopus/scASGC.


Assuntos
Algoritmos , Perfilação da Expressão Gênica , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise da Expressão Gênica de Célula Única , Análise de Célula Única/métodos , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...